

Broommood Primary School

This policy supports the White Rose maths scheme used throughout the school. Progression within each area of calculation is in line with the programme of study in the 2014 National Curriculum. This calculation policy should be used to suppont children to develop a deep understanding of number and calculation. This policy has beer designed to teach children through the use of concrete, pictorial and abstract representations.

Concrete representation a pupil is first introduced to an idea or skill by acting it out with real objects. This is a 'hands on' component using real objects and is a foundation for conceptual understanding.

Pictorial representation - a pupil has sufficiently understood the 'hands on' experiences penformed and can nom relate them to representations, such as a diagram on picture of the problem.

Abstract representation a pupil is now capable of representing problems by using mathematical notation, for example $12 \times 2=24$.

It is important that conceptual understanding, supported by the use of representation, is secure for all procedures. Reinfoncement is, achieved by going back and forth between these representations.

EYFS - Addition

	Concrete	Pictorial	Abstract
Explore part-pant whole relationshi P combining two pants, to make a whole	Whole 		$4+3=7$ Four is a part, 3 is a part and the whole is seven.

Year One -

	Concrete	Pictorial	Abstract
Combining two parts, to make a whole: part whole model.	Use part part whole model. Use cubes to add two numbers together as a group or in a bar.		$4+3=7$ Four is a part, 3 is a part and the whole is seven.
Starting at the biggen number and counting on- using cubes.	Counting on using number lines using cubes or Numicon.	A bar model which encourages the children to count on, rather than count all.	The abstract number line: What is 2 more than 4 ? What is the sum of 2 and 4 ? What is the total of 4 and 2 ? $4+2$

Regroupin g to make IO using ter-frame.	Regrouping to make 10 ; using ten frames and counters/cubes or using Numicon. $6+5$ G-je	Children to draw the ten frame and counters/cubes.	Children to develop an understanding of equality e.g. $\begin{aligned} & 6+\square=11 \\ & 6+5=5+\square \\ & 6+5=\square+4 \end{aligned}$

Year Two - Addition

	Concrete	Pictorial	Abstract
Adding three single digits.	Combine to make 10 first if possible, or bridge 10 then add third digit	Regroup and draw representation.	$\begin{aligned} \frac{4+7+6}{10} & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make/ bridge ten then add on the third.
Use base 10 to combine a single digit and 2-digit number	TO + O using base 10. Continue to develop understanding of partitioning and place value. $41+8$	Children to represent the base $10 \mathrm{e} . \mathrm{g}$. lines for tens and dot/crosses for ones.	$41+8$ $1+8=9$ $40+9=49$
Use of base 10 to combine two 2digit numbers,	TO + TO using base 10. Continue to develop understanding of partitioning and place value. $36+25$	Chidlren to represent the base 10 in a place value chart.	Looking for ways to make 10.

Year Three - Addition

	Concrete	Pictorial	Abstract
Column method no regrouping. 3-digit numbers,	 Add together the ones first, then the tens. Move to using place value counters	Children move to drawing the counters using a tens and one frame.	$\begin{array}{r} 223 \\ +114 \\ \hline 337 \end{array}$ Add the ones first, then the tens, then the hundreds.
Column method regrouping 3-digit numbers,	Exchange ten ones for a ten. Model using numicon and pv counters.	Chidren to represent the counters in a place value chart, circling when they make an exchange.	$\begin{array}{r} 243 \\ +368 \\ \hline 611 \\ \hline 11 \end{array}$

Year Four to Six - Addition

EYFS - Subtraction

Year One - Subtraction

	Concrete	Pictorial	Abstract
Taking amay ones	Use physical objects, counters, cubes etc to show how objects can be taken away.	$15-3=12$ Cross out drawn objects to show what has been taken away.	$7-4=3$ $16-9=7$
Counting back	Move objects away from the group, counting backwards. Move the beads \square along the bead string as you count backwards.	Count back in ones using a number line.	Children to represent the calculation on a number line or number track and show their jumps. Encourage children to use an empty number line
Find the difference	Compare objects and amounts	Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate.	Find the difference between 8 and 5 . $8-5$, the difference is \square Children to explore why $9-6=8-5=7-4$ have the same difference.

Part whole model	Link to addition. Use PPW model to model the inverse. If 10 is the whole and 6 is one of the arts, what s the other part? $10-6=4$	Use pictorial representations to show the part.	Move to using numbers within the part whole model.
Make 10 using the ten-frame	Making 10 using ten frames. 14-5	Children to present the ten frame pictorially and discuss what they did to make 10 .	Children to show how they can make 10 by partitioning the subtrahend. $\begin{aligned} & 14-4=10 \\ & 10-1=9 \end{aligned}$

Year Two - Subtraction

	Concrete	Pictorial	Abstract
Counting back	Move objects away from the group, counting backwards. Move the beads	Count back in ones using a number line.	Children to represent the calculation on a number line or number track and show their jumps. Encourage children to use an empty number line
Find the difference		Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate.	Find the difference between 8 and 5 . $8-5$, the difference is \square Children to explore why $9-6=8-5=7-4$ have the same difference.
Pant whole model	Link to addition. Use PPW model to model the inverse. If 10 is the whole and 6 is one of the arts, what s the other part? $10-6=4$	Use pictorial representations to show the part.	Move to using numbers within the part whole model.

Make 10 and find the difference	Use a bead bar or bead strings to model counting to next ten and the rest.	Use a number line to count on to next ten and then the rest.	$93-76=17$
Use base IO to. subtract a single digit number from a 2digit number	Column method using base 10 .	Children to represent the base 10 pictorially.	Column method or children could count back 7 .
Use base IOsubtract two 2digit number without exchangin g	Use base 10 or Numicon to model	$48-23=25$	$\begin{gathered} 47-24=23 \\ -\frac{20+7}{20+3} \\ 20+3 \end{gathered}$ Intermediate step may be needed to lead to clear subtraction understanding.

Year Three - Subtraction

	Concrete	Pictorial	Abstract
Use base 10 to subtract two 2digit numbers, without exchangin g	Use base 10 or Numicon to model	$48-23=25$	$\begin{gathered} 47-24=23 \\ 40+7 \\ -\frac{20+4}{20+3} \\ \hline \end{gathered}$ Intermediate step may be needed to lead to clear subtraction understanding.
Column method with regrouping (up to 3 digits using PV counters)	Column method using place value counters. 234-88	Represent the place value counters pictorially, remembering to show what has been exchanged.	Formal colum method. Children must understand what has happened when they have crossed out digits.

Year Four to Six -Subtraction

	Concrete	Pictorial	Abstract
Yn 4 Column method with regrouping Yean 4 subtract with up to 4 digits.		Represent the place value counters pictorially, remembering to show what has been exchanged.	$-\frac{2 x^{1} 5}{2}$
Yn 5 Column method with regrouping Year 5 subtract with	Column method using place value counters. $234-88$	Represent the place value counters pictorially, remembering to show what has been exchanged.	$\begin{array}{r} { }^{2} X^{10} x^{1} 0 \$^{\prime} 6 \\ -\quad 2128 \\ \hline 28,928 \end{array}$ $\begin{array}{l}\text { Use zeros } \\ \text { for place- } \\ \text { holders. }\end{array}$ ${ }^{6} 7^{10} X^{1} 69$ 8 $-\quad 372 \cdot 5$ $6796 \cdot 5$

decimals linked to money			
Yn 6	Consolidate KS2 methods	Consolidate KS2 methods	Consolidate KS2 methods

EYFS - Multiplication

| | Concrete | Pictorial | Abstract |
| :--- | :--- | :--- | :--- | :--- |
| Recognise
 and make
 equal
 groups of
 objects. | Use manipulatives to create equal groups. | | |

Year One - Multiplication

	Concrete	Pictorial	Abstract
Doubling	Use practical activities using manipultives including cubes and Numicon to demonstrate doubling	Double 4 is 8	Partition a number and then double each part before recombining it back together.
Counting in multiples	Count the groups as children are skip counting, children may use their fingers as they are skip counting.	Children make representations to show counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $2,4,6,8,10$ $5,10,15,20,25,30$

Year Tmo- Multiplication

	Concrete	Pictorial	Abstract
Counting in multiples of 2,3,5 and 10	Count the groups as children are skip counting, children may use their fingers as they are skip counting. Use bar models. $5+5+5+5+5+5+5+5=40$	Number lines, counting sticks and bar models should be used to show representation of counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{aligned} & 0,2,4,6,8,10 \\ & 0,3,6,9,12,15 \\ & 0,5,10,15,20,25,30 \end{aligned}$ $4 \times 3=$
Multiply using arrays	Use arrays to illustrate commutativity counters and other objects can also be used. $2 \times 5=5 \times 2$ 2 lots of 5 5 lots of 2	Children to represent the arrays pictorially. 00 $\begin{aligned} & 00000 \\ & 00000 \end{aligned}$	Children to be able to use an array to write a range of calculations e.g. $\begin{aligned} & 10=2 \times 5 \\ & 5 \times 2=10 \\ & 2+2+2+2+2=10 \\ & 10=5+5 \end{aligned}$

Year Three - Multiplication

	Concrete	Pictorial	Abstract
Multiply using arrays	Use arrays to illustrate commutativity counters and other objects can also be used. $2 \times 5=5 \times 2$ 2 lots of 5 5 lots of 2	Children to represent the arrays pictorially. 00 $\begin{aligned} & 00000 \\ & 00000 \end{aligned}$	Children to be able to use an array to write a range of calculations e.g. $\begin{aligned} & 10=2 \times 5 \\ & 5 \times 2=10 \\ & 2+2+2+2+2=10 \\ & 10=5+5 \end{aligned}$
Multiply 2-digit numbers, by I-digit numbers, using base IO, Numicar on Cuisenaine rods,	Partition to multiply using Numicon, base 10 or Cuisenaire rods. 4×15	Children to represent the concrete manipulatives pictorially.	Children to be encouraged to show the steps they have taken. A number line can also be used

Year Four - Multiplication

Year Five - Multiplication

Year Six - Multiplication

	Concrete \quad Pictorial	Abstract
Multiply 4-digit numbers, by 2-digit numbers, using a formal column method	When children start to multiply $3 \mathrm{~d} \times 3 \mathrm{~d}$ and $4 \mathrm{~d} \times 2 \mathrm{~d}$ etc., they should be confident with the abstract: To get 744 children have solved 6×124. To get 2480 they have solved 20×124.	 Answer: 3224

EYFS - Division

	Concrete	Pictorial	Abstract
Sharing with practical objects, and hearing the language of shaning	Sharing using a range of objects.	Represent the sharing pictorially.	This is not appropriate for this age groups

Year One - Diwision

	Concrete	Pictorial	Abstract
Division as sharing		Children use pictures or shapes to share quantities.	12 shared between 3 is 4

Year Two - Dinision

	Concrete	Pictorial	Abstract
Division as sharing	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities. Children use bar modelling to show and support understanding. $12 \div 4=3$	$12 \div 3=4$
Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	Use number lines for grouping $12 \div 3=4$ Think of the dar as a wnoie. sput it into the number of groups you are dividing by and work out how many would be within each group. $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?

Division using our knombedge of arrays,	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rlrl} \operatorname{Eg} 15 \div 3 & =5 & 5 \times 3=15 \\ 15 \div 5 & =3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences	Find the inverse of multiplication and division sentences by creating eight linking number sentences. $7 \times 4=28$ $4 \times 7=28$ $28 \div 7=4$ $28 \div 4=7$ $28=7 \times 4$ $28=4 \times 7$ $4=28 \div 7$ $7=28 \div 4$
Division using repeated subtraction	Repeated subtraction using Cuisenaire rods above a ruler. $6+2$ 3 groups of 2	Children to represent repeated subtraction pictorially.	Abstract number line to represent the equal groups that have been subtracted.

Year Three - Division

	Concrete $2 \mathrm{~d} \div$ 1d with remainders using lollipop sticks. Cuisenaire rods, above a ruler can also be used. $13 \div 4$ Use of lollipop sticks to form wholes- squares are made because we are dividing by 4 . \square \square \square \square There are 3 whole squares, with 1 left over.				Pictorial Children to represent the lollipop sticks pictorially.	Abstract $13 \div 4-3 \text { remainder } 1$ Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line. '3 groups of 4, with 1 left over'
2-digit and I-digit division with remainders,					Children to represent the lollipop sticks pictorially. There are 3 whole squares, with 1 left over.	
2-digit and I-digit division using PV counters, and/on base ten	Sharing 42 - 3 000 10 	sing place value coun -0			Children to represent the place value counters pictorially.	Children to be able to make sense of the place value counters and write calculations to show the process. $\begin{aligned} & 42 \div 3 \\ & 42=30+12 \\ & 30+3=10 \\ & 12+3=4 \\ & 10+4=14 \end{aligned}$

Year Four - Dinision

	Concrete	Pictorial	Abstract
Division with remainders,	$14 \div 3=$ Divide objects between groups and see how much is left over	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. Draw dots and group them to divide an amount and clearly show a remainder. (\ddagger) $\vdots:$ Use bar models to show division with remainders.	Complete written divisions and show the remainder using r.
3-digit and I-digit division using PV counters, and/on base ter	Short division using place value counters to group. $615 \div 5$ 1. Make 615 with place value counters. 2. How many groups of 5 hundreds can you make with 6 hundred counters? 3. Exchange 1 hundred for 10 tens. 4. How many groups of 5 tens can you make with 11 ten counters? 5. Exchange 1 ten for 10 ones. 6. How many groups of 5 ones can you make with 15 ones?	Represent the place value counters pictorially.	Children to the calculation using the short division scaffold.

Yean Five - Division

	Concrete	Pictorial	Abstract
4-digit and I-digit division using PV counters, including remainders,	Short division using place value counters to group. $615 \div 5$ 1. Make 615 with place value counters. 2. How many groups of 5 hundreds can you make with 6 hundred counters? 3. Exchange 1 hundred for 10 tens. 4. How many groups of 5 tens can you make with 11 ten counters? 5. Exchange 1 ten for 10 ones. 6. How many groups of 5 ones can you make with 15 ones?	Represent the place value counters pictorially.	Children to the calculation using the short division scaffold.

Year Six - Division

